Developing novel enzymatic activities for plastic biodegradation

Can you believe that plastic can be fully degraded simply by an enzyme in water and within hours? Watch for yourself!

We produced a newly engineered biocatalyst capable of breaking down more than 95% of PET in only 48 hours of incubation at 60 °C, without adding chemicals or using high temperatures. Enzyme-based PET biodegradation represents a useful tool and a feasible solution for the development of sustainable, environmental-friendly, and cost-effective processes for plastic recycling in a perspective of the circular economy.                                    

PI: Gianluca Molla and Loredano Pollegioni



Valentina Pirillo, Marco Orlando





Not funded


  • Davide Tessaro, Politecnico di Milano, Milan, IT

  • Annalisa Grimaldi, University of Insubria, Varese, IT

  • Marcella Reguzzoni, University of Insubria, IT

Plastic pollution has become a global concern in any sector of the human society. This is due to the accumulation of post-consumer synthetic plastic waste, which are highly resistant to many physical, chemical and biological factors.

The chemical backbone of some plastic polymers, such as polyethylene terephthalate (PET), is more susceptible to enzymatic biodegradation, which provides a novel and eco-friendly strategy for removing and recycling plastic wastes.

This project aims at the production of an efficient polyester hydrolase suitable for PET degradation, through the application of protein engineering and in vitro directed evolution approaches based on literature- and database-screened enzymes active in the hydrolysis of PET (PETase). In silico analyses will be employed to target specific enzyme variants, reducing the time needed to unlock their full potentiality. The produced variants will show enhanced catalytic properties (e.g., an increased activity towards high crystalline PET) and an improved thermal and chemical stability.

Immagine1 plastic.png